
Game development on Android

Using the NDK
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Overview

● Background
● Porting to JNI

● Differences to iPhone
● Basic JNI
● C++ Threads under JNI

● Debugging
● (OMG This is B***shit!)

● Some OpenGL tips and tricks
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Who am I?

● Matthew Clark matt@thevoxelagents.com
● Programmer/Founder of The Voxel Agents

● We make games - Original IP
● iPhone games

– Train Conductor
– Train Conductor 2

● Currently in the process of porting to Android

mailto:matt@thevoxelagents.com
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Voxel Engine

● Not a 'Voxel' Engine
● OpenGL engine originally for iPhone

● C++ as much as possible
● ObjectiveC for:

– File access
– Saving / Loading users data
– Sounds
– Texture loading

● Guess what we need to rewrite?    :)
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There is more!

● No STL (need to compile and link STLPort)
● No Exceptions

– Various libraries need tweaking/changing 
● TinyXML 
● JSON

● Minor compiler differences
● Our pipeline is heavily integrated with xcode
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And more... 

● Many devices means different resolutions and 
aspect ratios

● Even worse... different video cards!!
● With different subsets of OpenGL ES extensions
● No standard texture compression!

– iPhone uses PVR (4bpp)
– Smallest standard compression on android is RGB565 

(16bpp) – no alpha!
– For a 1024x1024 texture 512K vs 2Mb !



7

JNI
-

The Basics
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Calling C from Java
● Really Easy

● In .java:

● In .cpp :
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Calling Java from C

● Bit trickier
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GLSurfaceView
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Loading textures

● Phil Hassey's blog about porting Galcon to 
android is awesome!
● Files in /assets/* are directly accessable by 

filename
InputStream stream = app.getAssets().open(filename);

Bitmap bitmap = BitmapFactory.decodeStream(stream);

gl.glBindTexture(GL10.GL_TEXTURE_2D, textureID);

GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);

● Thats it!

● http://www.philhassey.com/blog/2010/08/03/port
ing-galcon-using-the-android-ndk/
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Sounds

● SoundPool (SoundFX)
● Specify how many sounds you want to play at once
● When you play too many sounds, it will stop playing 

the earliest one
– This is okay behaviour, but sometimes you want the 

opposite (requires manual tracking)

● AudioManager (Music)
– create()

– setLooping()

– start()
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pthreads

C++ threads can't 
access the JVM 
directly

They need to have a 
Java Native 
Environment created 
for them

AttachCurrentThread()

http://android.wooyd.org/JNIExample/

http://android.wooyd.org/JNIExample/
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pthreads continued...

● Make sure you Detach the thread
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Gotcha

● Because the thread is running outside of the 
GLContext – we can't do any GL operations
● Say good bye to threaded texture loading!
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Debugging JNI

● No breakpoints in native code
● Poor stack tracing

● Even worse inside Java!!!!

● Emulator is terrible (1-3 fps)
● Super headache!!!
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USELESS INFORMATION*

*from the perspective of a human
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arm-eabi-addr2line

● In the NDK tools 

● Converts useless information into slightly more useful information

– Doesn't always have line numbers 

– No object inspection

– Ouch Ouch Ouch

libVoxelEngine.so 00057328 _ZNK8Graphics6Sprite12DrawContentsEv ??:0
libVoxelEngine.so 000297b8 _ZNK8Graphics13DisplayObject4DrawEv ??:0
libVoxelEngine.so 000295e8 _ZNK8Graphics13DisplayObject12DrawChildrenEv ??:0
libVoxelEngine.so 000297c0 _ZNK8Graphics13DisplayObject4DrawEv ??:0
libVoxelEngine.so 000295e8 _ZNK8Graphics13DisplayObject12DrawChildrenEv ??:0
libVoxelEngine.so 000297c0 _ZNK8Graphics13DisplayObject4DrawEv ??:0
libVoxelEngine.so 000295e8 _ZNK8Graphics13DisplayObject12DrawChildrenEv ??:0
libVoxelEngine.so 000297c0 _ZNK8Graphics13DisplayObject4DrawEv ??:0
libVoxelEngine.so 000dbec8 _ZN7Project4Game10InlineDrawEv ??:0
libVoxelEngine.so 000dc144 _ZN7Project4Game4DrawEv ??:0
libVoxelEngine.so 001d8108 Java_com_tva_Voxel_VoxelRenderer_nativeRender ??:0
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Solution?
● Lots of logging
● Use logcat where possible to filter information

● __android_log_print(ANDROID_LOG_INFO, "VoxelEngine", "blah”)

● __android_log_print(ANDROID_LOG_DEBUG, "VoxelTextures", "blah”)

● __android_log_print(ANDROID_LOG_WARNING, "VoxelFonts", "blah”)

– Filter using debug levels and tags
● Filter: VoxelEngine:W VoxelTextures:I *:S

● Lots of Panadol / Asprin / Valium
● Don't create bugs? 
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NDK-GDB

● Finally! Available on android 2.2 phones!
● Line numbers! OMG!!! 

– I haven't used it successfully yet

http://vilimpoc.org/blog/2010/09/23/hello-
gdbserver-a-debuggable-jni-example-for-android/ 
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OpenGL

● The first rule of OpenGL development is...
● Avoid State Changes

● The second rule is...
● AVOID STATE CHANGES! :)
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Open GL

● Use texture sheets
● Don't rebind a texture 

that is already bound
● Cache the last bound 

textureID
● Fewer texture swaps

● Textures are rarely 
square anyway...
● save texture space!
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Open GL

● In our game, we have 5 different types of vert 
lists

– x,y,u,v,colour (Sprites with vert colours)
– x,y,z,nx,ny,nz,u,v (3D model)
– x,y,u,v (Regular Sprites)
– x,y (super simple shapes – mostly debug only)
– x,y,size,col (Point sprites (particles))

● Each different type needs a different setup
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● Remember the previous 
state

● Only change what you 
need to change
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OpenGL

● Use vertex buffers
● Use GL_SHORT where possible for vertex 

data.
● Shorts are half the size of floats
● Some androids don't support floating points :(
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