
Game development on Android

Using the NDK

2

Overview

● Background
● Porting to JNI

● Differences to iPhone
● Basic JNI
● C++ Threads under JNI

● Debugging
● (OMG This is B***shit!)

● Some OpenGL tips and tricks

3

Who am I?

● Matthew Clark matt@thevoxelagents.com
● Programmer/Founder of The Voxel Agents

● We make games - Original IP
● iPhone games

– Train Conductor
– Train Conductor 2

● Currently in the process of porting to Android

mailto:matt@thevoxelagents.com

4

Voxel Engine

● Not a 'Voxel' Engine
● OpenGL engine originally for iPhone

● C++ as much as possible
● ObjectiveC for:

– File access
– Saving / Loading users data
– Sounds
– Texture loading

● Guess what we need to rewrite? :)

5

There is more!

● No STL (need to compile and link STLPort)
● No Exceptions

– Various libraries need tweaking/changing
● TinyXML
● JSON

● Minor compiler differences
● Our pipeline is heavily integrated with xcode

6

And more...

● Many devices means different resolutions and
aspect ratios

● Even worse... different video cards!!
● With different subsets of OpenGL ES extensions
● No standard texture compression!

– iPhone uses PVR (4bpp)
– Smallest standard compression on android is RGB565

(16bpp) – no alpha!
– For a 1024x1024 texture 512K vs 2Mb !

7

JNI
-

The Basics

8

Calling C from Java
● Really Easy

● In .java:

● In .cpp :

9

Calling Java from C

● Bit trickier

10

GLSurfaceView

11

Loading textures

● Phil Hassey's blog about porting Galcon to
android is awesome!
● Files in /assets/* are directly accessable by

filename
InputStream stream = app.getAssets().open(filename);

Bitmap bitmap = BitmapFactory.decodeStream(stream);

gl.glBindTexture(GL10.GL_TEXTURE_2D, textureID);

GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0);

● Thats it!

● http://www.philhassey.com/blog/2010/08/03/port
ing-galcon-using-the-android-ndk/

12

Sounds

● SoundPool (SoundFX)
● Specify how many sounds you want to play at once
● When you play too many sounds, it will stop playing

the earliest one
– This is okay behaviour, but sometimes you want the

opposite (requires manual tracking)

● AudioManager (Music)
– create()

– setLooping()

– start()

13

pthreads

C++ threads can't
access the JVM
directly

They need to have a
Java Native
Environment created
for them

AttachCurrentThread()

http://android.wooyd.org/JNIExample/

http://android.wooyd.org/JNIExample/

14

pthreads continued...

● Make sure you Detach the thread

15

Gotcha

● Because the thread is running outside of the
GLContext – we can't do any GL operations
● Say good bye to threaded texture loading!

16

Debugging JNI

● No breakpoints in native code
● Poor stack tracing

● Even worse inside Java!!!!

● Emulator is terrible (1-3 fps)
● Super headache!!!

17

USELESS INFORMATION*

*from the perspective of a human

18

arm-eabi-addr2line

● In the NDK tools

● Converts useless information into slightly more useful information

– Doesn't always have line numbers

– No object inspection

– Ouch Ouch Ouch

libVoxelEngine.so 00057328 _ZNK8Graphics6Sprite12DrawContentsEv ??:0
libVoxelEngine.so 000297b8 _ZNK8Graphics13DisplayObject4DrawEv ??:0
libVoxelEngine.so 000295e8 _ZNK8Graphics13DisplayObject12DrawChildrenEv ??:0
libVoxelEngine.so 000297c0 _ZNK8Graphics13DisplayObject4DrawEv ??:0
libVoxelEngine.so 000295e8 _ZNK8Graphics13DisplayObject12DrawChildrenEv ??:0
libVoxelEngine.so 000297c0 _ZNK8Graphics13DisplayObject4DrawEv ??:0
libVoxelEngine.so 000295e8 _ZNK8Graphics13DisplayObject12DrawChildrenEv ??:0
libVoxelEngine.so 000297c0 _ZNK8Graphics13DisplayObject4DrawEv ??:0
libVoxelEngine.so 000dbec8 _ZN7Project4Game10InlineDrawEv ??:0
libVoxelEngine.so 000dc144 _ZN7Project4Game4DrawEv ??:0
libVoxelEngine.so 001d8108 Java_com_tva_Voxel_VoxelRenderer_nativeRender ??:0

19

Solution?
● Lots of logging
● Use logcat where possible to filter information

● __android_log_print(ANDROID_LOG_INFO, "VoxelEngine", "blah”)

● __android_log_print(ANDROID_LOG_DEBUG, "VoxelTextures", "blah”)

● __android_log_print(ANDROID_LOG_WARNING, "VoxelFonts", "blah”)

– Filter using debug levels and tags
● Filter: VoxelEngine:W VoxelTextures:I *:S

● Lots of Panadol / Asprin / Valium
● Don't create bugs?

20

NDK-GDB

● Finally! Available on android 2.2 phones!
● Line numbers! OMG!!!

– I haven't used it successfully yet

http://vilimpoc.org/blog/2010/09/23/hello-
gdbserver-a-debuggable-jni-example-for-android/

21

OpenGL

● The first rule of OpenGL development is...
● Avoid State Changes

● The second rule is...
● AVOID STATE CHANGES! :)

22

Open GL

● Use texture sheets
● Don't rebind a texture

that is already bound
● Cache the last bound

textureID
● Fewer texture swaps

● Textures are rarely
square anyway...
● save texture space!

23

Open GL

● In our game, we have 5 different types of vert
lists

– x,y,u,v,colour (Sprites with vert colours)
– x,y,z,nx,ny,nz,u,v (3D model)
– x,y,u,v (Regular Sprites)
– x,y (super simple shapes – mostly debug only)
– x,y,size,col (Point sprites (particles))

● Each different type needs a different setup

24

● Remember the previous
state

● Only change what you
need to change

25

OpenGL

● Use vertex buffers
● Use GL_SHORT where possible for vertex

data.
● Shorts are half the size of floats
● Some androids don't support floating points :(

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

